
3tier Architecture for Pedestrian Agent in Crowd Simulation1

GAO Peng, XU Ruihua

School of traffic and Transportation Engineering, TongJi University
CaoAn Road 4800#, Campus JiaDing, Shanghai 201804, China

Email: blue.silver@hotmail.com

Abstract: After extensive investigation and in-depth study of crowd dynamics with Chinese
characteristics, especially in the stations of Urban Mass Transit, we proposed a new architecture for
agent oriented pedestrian simulation. It’s designed to simulate the movement of thousands of
individual pedestrians through large, geometrically complex 2D space.

Our PSS (Pedestrian Simulation System for Urban Mass Transit Station) based on the
architecture has been developed. The results of the case studies show that the architecture is feasible
and effective in simulating intelligent human behaviors. Characteristic by openness and scalability,
it can be easily applied to other situations, such as Olympics and expo, etc.

Keywords: Modeling crowd dynamics, Pedestrian agent, Agent oriented simulation, Crowd
Simulation, Urban Mass Transit Station

1 Introduction

Construction of railway transit station requires a significant amount of human, material and
financial resources. Besides, it’s very expensive or impossible to make any alteration after the
blueprints turn into realities. The issue of security, convenience and coziness for passengers, and the
facility utilization, operation costs for operators largely depend on the size, space structure and
equipments layout of railway station. Moreover, how to deal with the emergencies and how to
evacuate passengers timely in the case of fire, explosion and poison gas is a formidable problem.

Computer simulation is a feasible and effective way to test and evaluate optional designs and
emergency strategies of railway station. However, existing pedestrian simulation systems usually
are:

1. Based on CA (Cellular Automata) theory, so the movement of pedestrians seems a little
“mechanical”. Because the velocity is discrete and it’s hard to take acceleration into
consideration.

2. Inadequate for intelligent real-time path planning, especially simulating large number of
pedestrians. Users often have to add certain kinds of navigations by hand.

 Aiming at simulating accurately and effectively the movement of thousands of pedestrians
through large, geometrically complex 2D space, a 3-tier Architecture is presented in this paper,
which combines many algorithms and models to deal with the problems such as “mechanical
movement”, intelligent real-time path planning and so on.

1 Sponsored NSFC (National Natural Science Foundation of China) Project: “Security and Reliability of Urban Mass
Transit Operation”, Approved Code: 50478105.

1

2 How the issue raised

In the field of Game Programming and Artificial Intelligence, there are many studies on
multi-agent movement. Programmers are usually confronted with several common problems, e.g.
“conflicts in path planning”, “realistic movement” and “long-distance path finding”.

2.1 Conflicts in path planning

In the multi-agent system, one agent may easily collide with others when moving along with
the path that previously planned. Because the map for search algorithm is changing with time (other
agent as obstacles is moving).

One of the strategies to solve the problem is “Waiting until others go away”. With this strategy,
queuing effect can be observed sometimes. Unfortunately, it may lead to “dead lock” when two
agents are waiting for each other. After that, more and more agents get together stupidly. Another
strategy is “re-plan the path when conflicts occur” (e.g. “Local Repair A*”, which describes a
family of algorithms widely used in the video-games industry). Although it can solve the conflicts
sometimes, often incur substantial computational overhead.

In order to avoid game characters huddle together stupidly, many algorithms have been
developed, e.g. David Silver [1] and Alborz Geramifard [2] (Department of Computing Science,
University of Alberta, Canada) proposed “Cooperative Pathfinding”. This algorithm add time
dimension into search space, which is originally 2D. With full information about the routes of others,
agents could find non-colliding routes to separate destinations.

After experiments we found that, there are still some problems if applying “Cooperative
Pathfinding” to pedestrian simulation:

1. Agents can’t achieve acceleration variable, curvilinear movement, or it’s too complex to
search non-collide path.

2. Hard to keep efficiency when the number of agents is too lager (10,000 for example).
So we strike out in another direction: do not try to solve these problems within pathfinding,

while separate the tasks and set a tier to take charge of them. The paths by search algorithm are only
used as rough navigation. In this way, the agents not only could achieve acceleration variable,
curvilinear movement, but also avoid each other smoothly.

2.2 Realistic movement

Since the output paths by basic search algorithm seem too stiff and often have “zigzag effect”,
many methods have been proposed to make the movement of
game characters more realistic and visually interesting.

For example: Marco Pinter, expert of game design and
development, from California, suggests that we can add some
realistic curved turns for agents, so that they don't appear to
change direction abruptly. (As Fig. 1)

 Fig. 1 Adding Realistic Turns
While after some tests we found that: comparing with calculating curved turns in geometric

way, better performance and less calculation costs can be achieved when turning to consider the
physical parameters of the agents. (Force exerted by other objects, acceleration, speed, etc.) It seems
a simpler, more natural way to achieve smooth and realistic movement.

2

2.3 Long-distance path finding

Generally speaking, a map with 10,000 nodes can be called “large scale”. Since the
computational cost increases rapidly with size of search space, pathfinding on large maps can
result in serious performance bottlenecks.

R.C. Holte (Computer Science Dept., University of Ottawa, Canada) [4] presents a hierarchical
approach for reducing problem complexity. This technique abstracts a map into linked local
clusters (as Fig. 2-2), Small clusters are grouped together to form larger clusters. At the global
level, clusters are traversed in a single big step. In this way, large number of meaningless nodes
(e.g. the nodes in cluster 1and 4, Fig 2) can be avoided. A hierarchy can be extended to more than
two levels.

Based on “Hierarchical Pathfinding”, this paper
abstracts the behavior of agents into a series of
“events”, then separates the task of “big-step search”
and set a tier to manage these events. The events also
can be organized in hierarchical structure, so similar
results can be obtained with more flexibility. Fig. 2 Hierarchical Pathfinding

From the above analysis, we can conclude that: to these difficulties in pedestrian simulation,
it’s usually very hard to be solved within one level. So we decoupled the task and proposed an
architecture, which combined many algorithms in different levels. Based on the architecture,
computer program is clearly structured, explicit in division of responsibility, and easy to
implement.

3 Structure of the architecture

Comparing with automobile, pedestrian is more free and flexible, whose behavior is complex
and is easily affected by other pedestrians or the environment. So we can hardly describe the nature
of crowd with one set of formulas or simulate pedestrian behaviors with one kind of model. In this
paper, pedestrian’s complex behaviors of are decoupled into 3 tiers, which are from macroscopic to
microscopic (as Fig. 3):

Event Flow Control Tier

Navigation Tier

Pedestrian Dynamics Tier

•Event Chain Management
•Event Motivation and Mission Assignment

•Macroscopic Navigation
•Microscopic Navigation

•Psychological and Physical Force Analysis
•Vector Based Movement Calculation

Fig. 3 Structure of the Architecture

3.1 Event Flow Control Tier

The first tier called “Event Flow Control”, which is responsible for event flow management
(such as walking, queuing, buy tickets, etc.) and event motivation (such as detour, overtaking,
etc.).For the sake of convenience, the following paper will take the passengers who enter the
subway station as an example, to demonstrate how the architecture works over the simulation
process.

3

In general, the behavior of agent in simulation system is composed of a series of events. To
passengers who enter the subway station, it might be such a flow:”enter - buy tickets - check in -
through staircases - waiting train - boarding”. Each event can be divided into many sub-events, e.g.
“buy tickets” may contain: “choose a tickets area - walk to the area - choose a tickets device -
queuing - buy tickets”. Each sub-event also can be divided into even smaller events, e.g. “walk to
tickets area” can be made up of “route choice”, “speed up/down”, “make a detour”, etc.
 Therefore, events are divided into 3 categories in this paper: “macro-events”, “meso-events”,
and “micro-events”. Proper data structures (class) have been designed for each category, and an
enumerable variable has been set to identify the status of the agent. Combining events of different
levels, we can get a tree-like diagram of status (due to the limitation of space, there are only the
events mentioned above):

Fig. 4 Tree-like diagram of agent status

Passengers who enter the subway station

Entry the station Buy tickets

Choose tickets
area

Walk to the
tickets area

Route
choice Walking Speed

up/down
Make a
detour ...

Choose tickets
device Queuing Buy

tickets

Chick in Though
staircases

Waiting
train Boarding

The flow of macro-events can be specified by users; otherwise, some search algorithm (such as

Ants Colony) also can be used if you like the agent smarter. Relevant floor, facilities and flow of
meso-events can be stored in the data structure of the macro-event. Since the motivation of
micro-events is relatively random (they can’t be managed in the way of flow), so we set an engine to
invoke micro-events on certain condition. By the way of changing the status variables, tiers can
communicate with each other.

In brief, events at all levels are managed in a hierarchical way. To different situations (such as
Olympics and expo, etc.), corresponding event control tier can be designed to meet specific needs.
Furthermore, some complex social behavior model can be integrated into the architecture, served
as the first tier.

3.2 Navigation Tier

After the “Event Flow Control Tier” makes sure the status of a agent, it may assign some
missions, and transmit parameters to lower tiers, depending on the characteristics of current status
diagram (is it leisure or in hurry, walking on passageway or staircase and so on). Among all missions,
the most common one is “move”, so navigation is crucial.

 In real life, pathfinding of pedestrians is usually not completed at one time. On the contrary,
they would like to divide the whole journey into many small parts, and set many local targets (e.g. a
guidance, a corner, etc.), and then find a comfortable local path.

Hence, the “Navigation Tier” is divided into 2 levels:
1. Macro-navigation: refers to identify a rough route from the source to the destination;

4

2. Micro-navigation: is responsible for real time path planning (depending on density,
geometry, etc).

For effective pathfinding, we adopt A* algorithm, which is a typical heuristic search algorithm
and is widely used in Game Programming, Artificial Intelligence and robotics. Heuristic search
means estimating the cost of every location in the search space, and choosing the lowest one for next
step, so tremendous unnecessary searching can be avoided and high efficiency can be obtained.

However, basic A* algorithm is inadequate for pedestrian simulation:
1. To large-scale pedestrian simulation system, there can be thousands of agents require

real-time pathfinding, and that may easily incur computational overhead. So we need to
optimize A*.

2. For A* is grid-based, the output path usually get “zigzag effect” (see Fig. 5 Left), while
nobody would like to walk in that way in real life.

3. The output paths by basic A* seems “clinging to obstacles” too much, but pedestrian
would like to make a detour earlier before the obstacle in real life (see Fig. 5 Right).

To solve the problems mentioned above,
many modifications have been done:

1. Special data structure is designed for
the implementation of A*, so it can achieve high
performance and meets the pathfinding nee
numerous agents.

ds of

A*
sing.

3. loped, which could reduce the “zigzag effect” and

and improved. A* has an ability of vary its

 “A Modified Heuristic Search Algorithm for Pedestrian
Simu

3.3 P cs Tier

tion, the next question is how the agents move and how to avoid
each

 Tier, which is
respo

2. The problem of the output path
“clinging to obstacle” of the basic A* has been
solved by imposing penalty on nodes near

 Fig. 5 Problems of basic
obstacles in map preproces
A “Trimming Algorithm” is deve
achieve smooth straight-line movement.

4. Several heuristic functions are compared
behavior based on the heuristic functions; we take advantage of the ability to embody
pedestrian’s route preference.
For more details, please refer to
lation” [5].

edestrian Dynami

After the problem of Naviga
 others. One of the simple ways is CA (Cellular Automata): the movement of agents based on

grid and they move one square for each step. Although this approach is easy to implement with
less computational costs, it’s hard to embody complex interaction between agents.

In this paper, we introduce “Social Force Model” into Pedestrian Dynamics
nsible for psychological and physical force analysis, and vector based movement calculation

(see Fig. 6).

5

Fig. 6 Basic equations of Social Force Model

Social Force Model is presented by Dirk Helbing et al. [6] in 1998. “Social force” represents

the e

uation in Fig. 3-4 can be interpreted as: the “social force” that imposes on a pedestrian
at a

ting to its destination.
er pedestrians.

ecomposed into 3 forces:
 each other.

estrians accurately, so
we c

lthough Social Fore Model could simulate some behaviors in the perspective of pedestrian
dyna

4 Computer experiments

In order to collect human and social behavioral data, specify the parameters of models in the
archi

ffect of the environment (e.g. other pedestrians or borders) on the behavior of the described
pedestrian.

This eq
time can be decomposed into 5 forces:
1. Driving Force: the motivation of get
2. Interactions: the motion of a pedestrian is influenced by oth
3. Repulsions: repulsive force exerted by obstacles, fire and so on.
4. Attractions: something interesting attracts the pedestrian.
5. Fluctuations: some stochastic fluctuations.
Among the 5 forces, “Interactions” also can be d
1. Psychological repulsions: Pedestrians like to keep certain distance from
2. Physical interactions: physical force exerted by others with body contact.
3. Attractions: attractions between people, e.g. friends and relatives.
Social Force Model can simulate acceleration and deceleration of ped
an gain experimental data to support facility comfort evaluation. Besides, it can solve the

problem of path conflicts and achieve agents avoiding each other smoothly. The series of points by
micro-navigation algorithm can serve as local targets for Social Force Model. One thing need to
be emphasized is that the distances between each two points need some more considerations: If
the distances are too large, then the agents are constrained on the path and Social Force Model
could not work well. On the contrary, if the distances are too small, then the agents may easily get
lost.

A
mics, it also has two shortcomings: first, it has no ability for path planning; second,

computational cost is high. To the first question, we combine navigation algorithm with Social
Force Model, then solved the problem. To the second question, we add an inter-medium (called
“info space”) into Social Force Model, then the agents exchange information through “info space”
other than communicating directly, so large amount of nonsensical communications are voided.

tecture, and validating consistency and reliability of our system, we made many on-spot

6

investigations in Shanghai. Such as transfer station “People Square”, intersection of Middle
Xizhang Road - West Nanjin Road etc. The results of the case studies show that the architecture is
feasible and effective in simulating intelligent human behaviors.

4.1 Finger Effect

In the high density crowd, especially bidirectional flow, pede
u

strians usually follow others to
red

viously observed in real life (Fig. 4-1 left), as well as in the
anim

Fig. 7 “Finger Effect” in real life and in our simulation system

4.2 Edge Effect.

 study of G. Keith Still (University Warwick of London [7]): in a unidirectional
high

dead end”

ere are large
num rner

nd

computational overhead.
proposed in this paper has the ability of real time path planning, agents

5 Conclusions

In the field of Game Programming and Artificial Intelligence, there are many studies on
mult

ce resistance. Then the two opposing flows self-organize into long chains of people passing
each other, like conga lines at a party. This is a phenomenon unique to interactive systems but not
fluid: so called “Finger Effect”.

“Finger Effect” can be ob
ation of our simulation system (Fig. 7 right).

According to
 density flow, pedestrians at the edge can move faster than whom at the center. By the

“density map”, which is calculated by our simulation system automatically, we also witnessed this
phenomenon clearly.

4.3 Case study with “

As Fig 8 shows, in this case, th
bers of pedestrians enter from the right-top co

of the map and exit at the left-bottom corner. There is a
“dead end” in the middle of their journey, which they
can see it clearly before entry. Generally speaking,
pedestrians would never walk deeply into the dead e
in real life, since they can see it. But to simulation
system, it’s not very easy to do this without incurring

Fig. 8 Case study with “dead end”

 Since the architecture
would never “been trapped”, and the simulation result is consistent with reality.

i-agent movement. A number of approaches have been proposed to solve some common

7

problems, such as “conflicts in path planning”, “realistic movement” and “long-distance path
finding”. Being confronted with similar problems in pedestrian simulation, we designed a new
architecture to combine many algorithms to handle them, other than trying to do this within one
tier. The advantages are:

1. With clear structure and explicit components responsibility, the architecture is flexible

rom macroscopic to microscopic, which is consistent with behavior

hitecture have ability of real time path planning.

rts.

Fig. 9 Simulation snapshot of transfer station “Zhongshan Park” of Shanghai

Our PSS (Pedestrian Simulation System for Urban Mass Transit Station) based on the
archi

creat

Event Flow Control Tier” or integrate
a mo

References

1. David Silver . Cooperative Pathfinding . [A]. R. Michael Young, John E. Laird (Eds.):

nce

 Game Developer, 2001, 3

and scalable;
2. The 3 tiers is f

process of pedestrians in real life;
3. Pedestrian agents based on this arc

Comparing with the simulation systems that require user to add navigation objects
manually, our system can obtain more real and objective results with much less effo

4. Due to Social Force model being integrated, the movement of agents is more realistic
than Cellular Automata, so our system can provide experimental data support for
comfort evaluation. Besides, the problem of “conflicts in path planning” is solved.

tecture has been developed in C#. It’s a self-contained system characteristic by “AutoCAD
Drawing Processing Technology”, “Image Analysis Technology”, and Agent oriented Simulation.

The feature of real-time path planning in our system can significantly reduce the workload of
ing simulation projects (no longer requires user to add navigation objects manually). Besides,

it reduces the impact of human factors (users) on simulation results. Fig. 9 shows Simulation
snapshot of transfer station “Zhongshan Park” of Shanghai.

Since the tiers are independent, you can design a new “
re complex “social behavior / decision model” instead to meet specific needs. In a word, the

architecture is open and scalable, and can be easily applied to other situations, such as Olympics
and expo, etc.

Proceedings of the First Artificial Intelligence and Interactive Digital Entertainment
Conference [C]. June 1-5, 2005, Marina del Rey, California, USA. AAAI Press 2005

2. Alborz Geramifard, Pirooz Chubak . Efficient Cooperative Path-Planning . Computing Scie
Department, University of Alberta. October, 2005

3. Marco Pinter . Toward More Realistic Pathfinding [J].

8

9

4. R.M. Zimmer, R.C. Holte, et al . Hierarchical A*: Searching Abstraction Hierarchies
Efficiently [M] . Lecture Notes in Computer Science . Berlin / Heidelberg : Springer, 2005

5. Gao Peng, Xu Ruihua and Zou Xiaolei . A Modified Heuristic Search Algorithm for
Pedestrian Simulation . [A]. Proceedings of the 7th International Conference of Chinese
Transportation Professionals[C]. Shanghai, China: ASCE, 2007.9

6. Dirk Helbing .Traffic Jams, Pedestrian Streams, Escape Panics, and Supply Chains [J].
Reviews of Modern Physics, 73(4), 1067-1141 (2001).

7. G. Keith Still. Crowd Dynamics [D]. London: University of Warwick, BSc Physical Sciences
(Robert Gordon's Institute of Technology, Aberdeen 1981), 2000

	1 Introduction
	2 How the issue raised
	2.1 Conflicts in path planning
	2.2 Realistic movement
	2.3 Long-distance path finding

	3 Structure of the architecture
	3.1 Event Flow Control Tier
	3.2 Navigation Tier
	3.3 Pedestrian Dynamics Tier

	4 Computer experiments
	4.1 Finger Effect
	4.2 Edge Effect.
	4.3 Case study with “dead end”

	5 Conclusions
	References

